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Higher-Order Shear Deformation Theory
for Thin-Walled Composite Beams

J. K. Suresh* and V. T. Nagarajt
Hindustan Aeronautics Limited, Bangalore 560 017, India

A higher-order shear deformation theory for the static and dynamic analysis of thin-walled composite
beams of arbitrary lay-ups and cross sections is presented. The method is applicable to beams of open
as well as closed cross sections. The formulation includes Euler-Bernoulli and Timoshenko theories as
subsets. The bending- and torsion-related warping functions are derived in closed form. The method is
validated by comparison with experimental and analytical results for static deflections of composite beams
with symmetric and antisymmetric lay-ups. Comparison with experimental results for the vibration of
beams exhibiting bending - torsion coupling shows that the present method gives better correlations. The
significance of the higher-order theory is brought out by validating the results of the analyses against
results from other theoretical methods. The results show the importance of the lay-up sequence on the

shear lag in thin-walled composite beams.

Nomenclature

A, = area enclosed by walls of the beam cross
section

A; = membrane stiffness, Eq. (5)

A, A, A, = membrane stiffnesses, Eq. (8)

a,(s) ... as(s) = contour warping functions, Eqs. (12), (14),
and (23)

b = width of the beam cross section

F = generalized forces Eq. (32)

F,F,F, = auxiliary functions, Eq. (24)

h = depth of beam cross section

I = area moment of inertia of cross section

K = Timoshenko shear coefficient

[K] = stiffness matrix, Eq. (33)

L = length of beam

N, N, N, = membrane stress resultants, Eq. (4)

P = tip load

Q,.,- = plane stress stiffnesses

q = general coordinates, Eq. (31)

r = radius vector, from the pole, to the
midsurface of wall, Eq. (3)

Sk, SF = auxiliary functions, Eq. (17)

s = contour coordinate

u, v, w, ¢ = axial and lateral deflections, and twist

X, ¥, 2 = beam coordinates

«@ = cross-sectional constant of Eq. (30)

), o, = parameters for optimization, Eq. (19)

B = cross-sectional constant, Eq. (29)

B.. B. = slopes of reference axes

€ri o Vos = axial, hoop, and shear strains

1. Introduction

DVANCED composite materials offer the benefits of
lightweight structures that have good fatigue and damage
tolerant behavior. Thin-walled box beam constructions have
been used for primary components like helicopter rotor blades
and wing spars. Composite materials offer the possibility of
aeroelastic tailoring by introducing certain couplings, e.g., be-
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tween bending and torsion or between axial elongation and
torsion. To exploit these properties during the design phase it
is advantageous to develop an analytical tool that reflects the
special characteristics of composite materials. Such a model is
also useful in understanding the various couplings.

There exist a number of theories for the analysis of isotropic
thin walled beams with open or closed cross sections. In ad-
dition to the widely used Euler—Bernoulli theory, the influence
of restrained torsional warping and shear deformation are
considered.'~* A systematic, variationally consistent higher-or-
der shear deformation theory for isotropic beams has been pro-
posed by Krishna Murty’ as an extension of his earlier work.®’
This method is capable of generating a hierarchy of models
starting from the Euler—Bernoulli theory and progressing suc-
cessively to the Timoshenko theory and then to the second and
higher-order shear deformation theories.

The development of analytical tools for composite beams
has resulted in a number of finite element based methods®™*°
and also direct analytical methods.'' "> These methods have
been surveyed.”® While the finite element methods (FEMs) are
powerful tools, they rely on comparatively larger computations
and do not give the same amount of physical insight as the
simpler, more direct methods.

Among the direct analytical methods, the pioneering work
of Mansfield and Sobey'” extended the classical Bredt—Batho
analysis to composite thin-walled beams and recognized the
potential for aeroelastic tailoring. Libove'® developed a similar
analysis and gave a more rigorous derivation of the equations.

Rehfield” proposed a model that included the effects of
shear deformation in a manner similar to the Timoshenko the-
ory. This was further elaborated by Rehfield et al.>' where the
influences of elastic bending-shear coupling and restrained
warping were clearly brought out. The model of Smith and
Chopra® is similar to Rehfield’s model except in the treatment
of the constitutive relations and torsion-related warping. More
recently, Chandra and Chopra™ have refined the torsion-related
warping representation, which takes account of the variation
of properties along the contour.

Rand**** used a detailed description of both torsion- and
shear-related warping effects in his analysis of thin-walled
beams and has brought out the factors that give rise to struc-
tural couplings.

The direct analytical methods developed so far have been
specialized either to open cross-sectional beams or to beams
with one or two-cell cross sections. A correlation study shows
that for composite beams exhibiting extension—torsion cou-
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plings, the methods of Mansfield,”’ Rehfield,"”*' and Smith and
Chopra® give excellent correlations with both finite element’
and experimental’®” results. However, for the composite
beams exhibiting bending—torsion couplings, only Mansfield’s
method gives good correlations with experiment. Using the
framework of Rehfield’s theory,'®”" it is shown in this article
that it is possible to improve the correlations by proper rep-
resentation of the torsion-related warping. A method for sys-
tematically deriving the warping functions for both shear and
torsion is presented.

II. Outline of the Theory

A brief outline of Rehfield’s method, which is the basis for
the present method, is first presented. Consider a thin-walled
beam whose x coordinate runs along a reference axis and the
circumferential coordinate s runs along the midsurface of the
walls. The beam undergoes the following generalized displace-
ments: axial u, flatwise bending w, edgewise bending v, and
twisting ¢.

The displacement field is given by

u=ulx, s) + yB.x) + 2,0
v=V(x) — zd(x) (D
w= W) + yd(z)

The corresponding strains on the midsurface of the wall of
the cross section are

=i, + yB. t 2B @
Yo =ty T [V + Bly, + [W, + Bz +rd. (3)

where r = yz, — 2y,

The variables B. and B, represent the slopes of the reference
axis caused by bending, whereas [V, + B.] and [W, + B,]
represent the slopes caused by shear deformation. For thin-
walled beams, the local shell bending and twisting moment
resultants can be ignored and only the membrane stress resul-
tants N,., N, and N,, need to be considered. These are related
to the membrane strains by

N, Ay A Ay Ex
Ny =|An An Ay Egs )
N, Ay Ay Ags Yes

where, for a laminate of N plies, the A; are determined from
N

Ay= D O®h G j=1,2,6) 5)
k=1

where A is the thickness of the kth ply and O are the plane
stress stiffnesses.

For closed cross sections, assuming that there is no internal
pressure, the local shell bending and twisting moment can be
ignored and we can set

N, =0 ©)

The hoop strain g, can be eliminated from Eq. (4) to give
Nol _ A, ALl )&
{N} - [A,,S Am] {y} )

- A7}2/A22; Ay=A —
Ay =Ag — A%slAzz

where

A, = Ay ApArelAx

&)

III. Derivation of Warping Functions

The equilibrium of an element of the wall of the beam re-
quires that

(Ny)..=0, and (N, + (N,).,=0 )

When A, and A, are independent of x, the first of Eq. (9)
implies that

(Vi) = —(AulADE (10)

and the second of Eq. (9) gives
N, = NS — f [A,, — AnL/AL)E. . ds a1
o

where N2, is a constant in the cell and represents the statically
indeterminate part of the shear flow.
From Eq. (7), the shear strain is given by

Vi = NulAy, — (AlADE, (12)

From Eqgs. (11) and (12)

N1 [ A AL - 1%
s = T T T an | € A8 — o
YA T AL ), A a,°

55 $5

From kinematical considerations, v, is also given by Eq. (2).
Continuity of the axial displacement requires that

§ u,ds=0 (14)

Equations (2), (13), and (14) define N2, and also the warping
functions. Neglecting the last term in Eq. (13), an approxi-
mation to the axial deformation can be expressed in the form

u=u + yp. + 2B, — ax(s)p.. — a,(sHh, —

asx(s) = f

as($)y,.  (15)

where
[(FylAy) — 1l ds

afs) = | [(F, — S¥)/A,] ds (16)

as(s) = j ((F. — SH/A,] ds

gl /)

[ @ @
S* = A, — | — z ds
o L Ay
[ 5 ds
Ao [5]e/9 ()
idbn ez
F.=0Q |=|——
g5

A

and A, is the area of the cross section of the cell.
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The torsion warping function F, in Eq. (17) is similar to the
one used by Rehfield,"” except that the variation of A,, along
the contour is taken into account in the present definition. The
notation used for F,, F., Fy, S}, and S¥ is identical to the one
used by Gjelsvik,” except for the term [A4,, — (AL/A,)] for
composite construction. Gjelsvik derived these quantities by a
flexibility approach and these are associated with the reactive
or secondary shear flows. Analogous terms have also been
derived by Mansfield'” and Libove." The warping functions in
Eq. (17) account partially for the influence of A,; the influence
of this term will be included later.

The displacement field for u given by Eq. (22) contains dif-
ferent levels of approximation. Ignoring as(s), as(s), and as(s)
and setting B, = —V , and B, = —W,, results in the Euler—
Bernoulli model. Ignoring a,(s) and as(s) results in the first-
order shear deformation model (Timoshenko theory), which
has been used by Rehfield." Inclusion of a,(s) and as(s) results
in the higher-order shear deformation theory.

IV. Static Response of Thin Walled Beams

Using the Timoshenko model, the displacement field is
given by [Egs. (15) and (1)]
u=wux) + yBx) + z2B,(x) — axs$)¢.(x)
v = V(X)) — z¢(x) (18)
w=W(X) + yp(x)

This results in the axial and shear strain given by

Ex = Uy + yB:.X + ZB_\',X - ala3¢‘xx
Yes = Uiy + (B' + V\)y\ + (B\ + W.\')Z‘x (19)

- wla;, + P,

These are of the same form as the strains derived by Reh-
field,”” except for the two parameters (o, and «,), which will
be determined later. Following Rehfield,"” the generalized
strains and the generalized stress resultants can be expressed
as

g=lu. B+V) B+ W) . B du]" (20
F=[N Q. Q0 M M Q) 2
The beam stiftfness matrix [K] is defined such that

{F} =[K}q} (22)

This [K] is a 7 X 7 symmetric matrix and has the same form
as the one derived by Rehfield,' with the difference that the
constants «, and a, will be present in some of the elements.
These two constants can be determined by imposing the con-
dition that the strain energy of the internal forces is a mini-
mum, i.e.,

— =0, —=0 (23)

This results in a pair of simultaneous equations for «; and
«, in terms of the sectional properties and the generalized
strains ¢g. This procedure is illustrated with reference to specific
cases in the following sections.

V. Application to Thin-Walled Beams
of Rectangular Cross Section

Composite thin-walled beams exhibit a number of cou-
plings. Two specific types of construction are examined.

The first is the symmetrical or mirrorwise lay-up in which
the value of A,, is the same on both sides of the axis of sym-
metry, but has opposite signs. For this lay-up (with the axis of
symmetry as the y axis), the nonzero elements of K are K,
K2, K», Ks3, Kuy, Kis, Kss, Kes, and K5;. This results in a cou-
pling between the axial and shear deformations and between
bending and twisting.

The second type of lay-up is the antisymmetric lay-up. If
the axis of symmetry is the y axis, the nonzero elements of K
are Ky, Kis, Ky, Kos, Kss, Kzeo Ku, Kss, Ko, and K7, The
coupling is between the axial and torsional deformations and
between bending and shear deformations.

For rectangular beams with symmetrical layup, Eq. (23) re-
sults in

o, =0

<§ Anras, ds) <§ A, a3, ds> <BU_> 24)
<§ Aas, ds> (§ A,aj, ds)

b,

This implies that the term ¢, is not present in &,. The
parameter o, consists of a constant part and a part that brings
out the coupling between bending and torsion through the cou-
pling term A,,. The stiffness matrix (for the bending and tor-
sional deformations) is

M, _ K Kis .
{M} - [K Kss] {B} @

5 ds
ke=sr /9] 7]
Ke=240 2| 4 ds
$= A% T A (26)
[é A,205., ds]
3€ A,ai, ds

For beams with constant A,, along the contour, K, and K
are the same as those derived by Rehfield."” The bending stiff-
ness Kss is lower than that derived by Rehfield because of the
additional flexibility introduced by the coupling term A,,. For
the present case, Mansfield’s method'” gives the same values
for K,s and K, but the bending stiffness is given by

<A,,3 el
s
A2, a. )t
Kss (Mansfield = A, =Bl oo B0 0 2
9{
ASS

@n

o = —

where

Kss = § A,mZz ds —

For the beams considered in this article, Eqgs. (26) and (27)
give very close values.

For a beam of rectangular cross section, it is possible to
express as(s) as

as = Byz (28)
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where
B=(— D(a+1) 29)

o = bla (Rehfield")
o = bGL/aGY; (Smith and Chopra™) (30)

a=bAfjaAY  (Present article)

For beams having no variation in the effective shear mod-
ulus (G.; or A,,) along s, all of the previous definitions give
the same values for c.

Figures 1-6 show the bending slope and the twist caused
from unit tip load for the beams tested by Chandra et al.”’ at
the University of Maryland. These beams had the following
dimensions: length, 30 in.; flange width, 0.953 in.; and web
height, 0.597 in. The walls were 0.032 in. thick, the lay-up of
the flanges was (6),, and that of the webs was (8/—8);. Beams
S2, 83, and S4 had values of 6 = 15, 30, and 45 deg, respec-
tively. Figures 1-6 display the following results: 1) experi-
mental values” (denoted by E), 2) finite element analysis of
Stemple and Lee’ (denoted by F), 3) Smith and Chopra
method” (denoted by S-C), 4) Mansfield’s method'” (denoted
by M), 5) Rehfield’s method with a = b/a (denoted by R1),
6) Rehfield’s method with a = A, /aA Y and with Ki; as given
by Rehfield (denoted by R2), and 7) the present method (de-
noted by R3). The first three of the previous results are taken
from Ref. 22.

The results from the present method (R3) and those from
Mansfield’s method (M) are almost identical and are close to
the FEM of Stemple and Lee,” who used a beam finite element
with the cross section warpings determined by a FEM.

Considering first the bending slope from the unit tip load,
Rehfield’s method underestimates the response since it does
not account for the additional fiexibility because of the A,
term. The results from the FEM, M, and R3 are close to each
other. As fiber orientation increases from 15 to 45 deg, the
method of Smith and Chopra gives better correlations with

© o [ (EXPERIMENTAL 27)
————— F (FINITE ELEMENT METHOD 9)
-------------- R1 (REHFIELD'S METHOD 19)
—————— M (MANSFIELD 17), R3 (Present)
— -+ - -— SC (SMITH AND CHOPRA 22)
————- — R2 (REHFIELD'S METHOD WITH

IMPROVED TORSION WARPING)

T T T T T T T T T T — —
=
-
010 o = s
= . - .
2 2 e :
i P g -
-y < S S rEL
008 - 7 . T s
— e PRI
X . P
3 - s 4
g o /'/ g
006 AT i
2
o L iy ]
n .5
. /'
o /
2 o0s - [ 1
h= o
3 L i o i
(r
o2 | [ .
'/
.000 L 1 i 1 1 1 I 1 1 ' !
0 5 10 15 20 25 30

Spanwise Co—ordinate X (inches)

Fig. 1 Bending siope caused by the unit tip load, bending - tor-
sion coupled graphite epoxy (15 deg).

© o g (EXPERIMENT 27)
————— F (FINITE ELEMENT METHOD 9)
-------------- R1 (REHFIELD'S METHOD 19)
———————— M (MANSFIELD 17), R3 (PRESENT)
—~ -+ --— 5C (SMITH AND CHOPRA 22)
——-—-- — R2 (REHFIELD'S METHOD WITH

IMPROVED TORSION WARPING)

T T T T T T T T T T T
024 - E
L o
Y ="
- - —
V. PR
020 | y o s g
V. ’//U
- V, ;" ___________ =
7 s et
-~ Y 9
o 016 | , 77 -
o g .
= N gy v -
[ ] V/d . ol
Y 7% .
= 012 - I A e
n VA
<] Y/ Arrl
£ r 4 7 1
5 J,7
e
S w008 ey -
%
yr.
r ’: 1
17205
004 + LS 4
1/
72 _
@ f
.000 1 ! 1 1 t 1 1 L L 1 )
[¢] 5 10 15 20 25 30

Spanwise Co-ordinote X (inches)

Fig. 2 Bending slope caused by the unit tip load, bending-tor-
sion coupled graphite epoxy (30 deg).

experimental results than the other methods. The results for
the twist under tip load show that the FEM, M, and R3 give
better correlations than the other methods.

These results show that accurate results can be obtained by
the Euler—Bernoulli model provided the torsion-related warp-
ing and the additional bending flexibility caused by the cou-
pling term A, are properly represented.

VI. Vibrations of a Composite Beam of Solid
Rectangular Cross Section

Reference 30 presents the experimental results for composite
beams of rectangular cross section. The beams were 0.5 in.
wide and 0.125 in. thick with a double cantilever length of 15
in. Graphite fiber and boron fiber beams with lay-ups of 0, 15,
30, and 90 deg were tested. Reference 30 also contains theo-
retical results.

The 15- and 30-deg beams exhibit coupling between bend-
ing and torsion. With b and £ representing width and depth of
the beam, the bending, torsion, and coupling stiffnesses are
given by the present method as

~ 0% ]
Q%l{QGS/Q_ll + Quhz/Qllbz

Ki = 40cl, /{1 + Quch’lQ,b%} G

Kis = 2016 /{1 + Quh’101,b%)

Kss = in_v l:l

The corresponding stiffnesses obtained by a flexibility
method® are

Kss = Qllly[l - 0'63(GQ%6/bQ11)]
K, = 4Q651y[1 — 0.63a/b} 32)
K,;s = 2Q_,(,Iy[l — 0.63a/b}
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As in the case of the thin-walled beam, the reduction in
bending stiffness because of the coupling term Q,¢ (similar to
A,,) is brought out by both methods.

Tables 1 and 2 give the correlations of the results obtained
by the present method with experimental results and also with
those obtained by other investigators. Tables 1 and 2 contain
the following results for the 15- and 30-deg beams: 1) model
R1 with the torsion related warping ignored, 2) model R1 with
inclusion of torsion related warping (model R1BT), 3) model
RIBT with shear deformation included (model R1BST), 4)
present method with shear deformation neglected (model
R3BT), 5) theoretical results from Abarcar and Cunniff*® based
on the flexibility approach, 6) theoretical results from a flexi-
bility approach following Suresh and Venkatesan® (model
BST), 7) theoretical results from Mukherjee® who used a stiff-
ness approach including higher-order shear deformation theory
combined with the FEM, 8) theoretical results from Hodges et
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pled graphite epoxy (30 deg).

© 0  E (EXPERIMENTAL 27)
————— F (FINITE ELEMENT METHOD 9)
-------------- R1 (REHFIELD'S METHOD 19)

M (MANSFIELD 17, R3 (PRESENT)
— -4 -+-— SC (SMITH AND CHOPRA 22)
———-- — R2 (REHFIELD'S METHOD WITH

IMPROVED TORSION WARPING)

T T T T T T T ¥ T T
016 F — 4
el
~ -
P
L = 2 i
rds
O .’
012 | 2 i
Z- —e— "9
4 —
- 7 i
el N o 3 .- -
o . -
4 7z e
~ /4 .
.008 A T meemmemmne -
@ 3 e
2 Y LS et
2ol oo -
»/ ‘-'—
004 |- O ]
;) e
2
.000 A el ' L 1 L 1 1 t I
[} 5 10 15 20 25 30

Spanwise Co—ordinate X (inches)-

Fig. 6 Twist caused by the unit tip load, bending-torsion cou-
pled graphite epoxy (45 deg).

al.*® who used a model similar to R1BST, 9) results from Ka-
pania and Raciti** who used a model similar to model S-C by
using a modified constitutive relation, and 10) experimental
results from Abarcar and Cunniff.”

All of the beams exhibit a number of couplings. However,
in the following discussion, the modes that are predominantly
bending or predominantly torsion will be referred to as bend-
ing and torsion modes, respectively.

An examination of Tables 1 and 2 reveals the following:

1) The neglect of torsion related warping grossly overesti-
mates the bending and torsion frequencies (between 29-45%
in the case of boron—epoxy and between 21-37% for
graphite—~epoxy beams).

2) Inclusion of the torsion-related warping (model R1BT),
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Table 1 Frequencies of graphite—epbxy beam

983

Abarcar
Sl Hodges Abarcar and and Cuniff
no. R1 RIBT RIBST Present BST et al.” Cunniff™ Mukherjee’ experiment™
a) 15-deg beam
1 109.9 85.4 853 82.16 854 77.35 84.0 82.5 82.5
2 687.5 532.0 529.1 511.4 532.0 479.19 521.4 517.9 511.3
3 1757.7 1472.2 1454.4 1411.1 1468.7 1317.3 1430.3 1437.4 1423.4
4 1923.3 1768.7 1769.3 1588.6 1627.7 1476.0 1604.0 1562.6 1526.9*
5 3751.8 2859.5 2798.9 2742.3 2857.6 e 2754.8 27849 2783.6
6 5282.8 4573.6 4515.6 4368.4 4524.7 —_— 4352.5 4535.6 4364.6
7 6129.6 5369.4 5532.3 4834.2 5010.0 4517.2 4853.5 4693.2 4731.6°
Abarcar
Sl Kapania and Hodges Abarcar and and Cuniff
no. R1 RIBT R1BST Present BST Raciti** et al.” Cunniff* Mukherjee™  experiment®
b) 30-deg beam
1 72.5 52.6 52.6 52.6 52.6 52.65 48.97 52.7 53.1 52.7
2 453.8 329.1 328.2 329.1 329.1 320.78 307.85 3293 330.5 331.8
3 1269.5 918.1 912.6 918.0 918.0 928.29 869.06 915.9 921.6 924.7
4 2041.4 1785.0 1766.4 1745.7 1777.3 e 1660.9 1767.0 1781.0 1766.9
5 2485.0 2051.7 2058.2 1818.9 1891.6 1818.42 e 1896.5 1798.3 1827.4°
6 4110.4 2948.4 2865.9 2922.1 2929.9 e —_— 2901.4 2956.3 2984.0
7 5948.1 4474.6 4190.1 42119 4299.7 e 5056.1 4263.9 4398.2 44324
“Indicates predominantly torsional mode.
Table 2 Frequencies of boron -epoxy beam
Abarcar
Sl Abarcar and and Cuniff
no. R1 RIBT R1BST Present BST Cunniff* Mukherjee® experiment™
a) 15-deg beam
1 1323 96.82 96.7 96.8 96.8 91.1 91.1 91.0
2 827.8 602.6 598.4 602.5 602.5 563.7 565.8 567.2
3 2130.58 1666.2 1640.3 1661.4 1663.96 15434 1567.7 1575.5
4 2315.8 2142.6 2142.7 1870.1 1971.2 1865.3 1721.7 1767.4"
5 4509.9 32314 31453 3227.1 3229.0 29584 3029.9 3073.6
6 6380.4 5155.0 5006.9 5157.7 5179.6 4681.1 4922.8 4926.7
b) 30-deg beam
1 89.2 64.96 64.9 62.58 64.96 62.5 62.5 62.5
2 559.0 406.3 405.1 391.4 406.3 390.1 390.2 391.7
3 1563.98 1134.1 11264 1092.6 1134.1 1084.6 1088.8 1090.5
4 2717.7 2209.7 2182.7 2121.4 2206.6 2097.5 21255 2107.7
5 3062.9 2720.5 2707.4 2280.1 2503.6 2343.1 2248.1 2174.3°
6 5056.6 3639.6 3572.8 3480.1 3675.5 3433.4 3502.3 3542.4

Indicates predominantly torsional mode.

vastly improves the correlations even without the inclusion of
shear deformation.

3) Model RIBST gives more marginally improved correla-
tions than model R1BT.

4) The present method, even without the inclusion of trans-
verse shear deformation (R3BT), gives much better correla-
tions than the previous models since it includes the reduction
in the effective bending stiffness caused by Q. The correla-
tions are especially good for the torsional frequencies.

5) The results from the present method are close to the val-
ues obtained by using a flexibility approach® where the stiff-
nesses are obtained through Lekhnitskii’s* elasticity solution.

6) The results from the theory of Abarcar and Cunniff,*®
which is based on the flexibility approach, give good corre-
lations with experiment.

7) The best correlations are obtained by Mukherjee’™ who
includes the influence of higher-order shear deformation.

8) Although the results of Hodges et al.”* may be expected
to be close to the RIBST model, it is puzzling to note the
poorer correlations. Their results underestimate the frequen-
cies. Also, they do not obtain all of the frequencies obtained

by the others, even though they obtain some additional fre-
quencies not reported by others.

9) The results of Kapania and Raciti** are close to those
obtained by model R1BST.

These comparisons show that for these beams, which exhibit
strong couplings especially between bending and torsion, it is
possible to predict the frequencies accurately in the Euler—
Bernoulli framework provided that the torsion-related warping
is optimized as done in the present method.

VII. Results from the Higher-Order Shear

Deformation Theory
The higher-order shear deformation theory will first be val-
idated against a mixed variational formulation for isotropic
beams,” where a cantilever thin-walled beam of rectangular
cross section of width b to depth A ratio of 2 and subjected to
a concentrated load P at the free end was considered as an
example. The tip deflection by the present theory is given by

W = (PL’3Ks)[1 + 104577 — 2.2799a” tanh(AL)]  (33)
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For the same beam, Timoshenko’s theory gives the tip deflec-
tion as

W = (PL/3Ks5)[1 + 2.3330%/K] (34)
In Egs. (33) and (34)
Kss = bending rigidity
o’ = (BILY(A,.JA.)
A =152V« (35)

K = Timoshenko shear coefficient, which depends upon

A,, and A, (Ref. 28)

The present theory [Eq. (33)] does not need the assumption
of a shear coefficient. The variable « is a modified slenderness
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- o ¢ +(45) of Ref. 28 ¢
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Fig. 7 (W — Wiggo)/Wepr for thin-walled beam of rectangular
cross_section as a function of modified slenderness ratio a =
VA,

ratio, which is a similarity parameter, and A is a decay param-
eter. The nondimensional static response of different beams
will be similar if they have the same value of a.

If we denote the deflection according to the Euler—Bernoulli
theory by Wegr, the parameter (W — Wey)/ Wiy represents the
nondimensional change in the tip deflection caused by shear
effects. The variation of this parameter as a function of « is
shown in Fig. 7. Low values of « represent either low values
of b/L (long, slender beams) or low values of Young’s modulus
to shear modulus ratio. Figure 7 shows that for values of «
greater than about 0.4, shear deformations become important
and the Euler-Bernoulli theory can grossly underestimate the
deflections. The present theory gives a single curve for differ-
ent types of lay-ups, whereas Timoshenko’s theory, with K
calculated from Banks’ method™® gives values depending upon
the ratio of (4,,/A,).

Figure 8 shows the distribution of the nondimensional axial
stress at the fixed end for a beam whose walls are made of
isotropic material. Also shown are the corresponding values
obtained from the Euler—Bernoulli theory and by the method
of Koo and Cheung,” who used a mixed variational formu-
lation for obtaining both the displacements and stresses in-
cluding shear lag effects for isotropic beams. The warping
functions used by them are very similar to the ones used in
this article. The present method using a single warping mode
shows excellent agreement with the results obtained by Koo
and Cheung using two and three warping functions.

For a thin-walled beam (a = 2b) with walls made of carbon
fiber, Fig. 9 shows the distribution of the nondimensional axial
stress at the root for (0/90-deg) and (*=45-deg) lay-ups. Also
shown are the corresponding values for an isotropic beam and
the values from the Euler—Bernoulli theory. [The values for
beam with (*30-deg) lay-up, which has not been shown in
the figure, are very close to the isotropic beam values.] The
importance of (4,,/A,,) is clearly seen with the shear lag effects
being predominant in the beam with (0/90-deg) layup and be-
ing lower than the isotropic beam values for the (£45-deg)
lay-up.

Figure 10 shows the spanwise distribution of the non-
dimensional axial stress at one corner of the beam. For the
beam with (0/90-deg) lay-up, the shear lag effects persist al-
most over the entire span, whereas for the (*45-deg) lay-up,
they decay very rapidly. For the (*45-deg) lay-up, the value
at 20% of the span is just 4.5% above the value predicted by
the Euler—Bernoulli theory.

------ — EBT
———— PRESENT
© © KOO & CHEUNG (2 TERM SOLUTION)
© 0 KOO & CHEUNG (3 TERM SOLUTION)

Fig. 8 Nondimensional axial stress at fixed end of thin-walled rectangular beam.
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Fig. 9 Nondimensional axial stress at fixed end of thin-walled beam of rectangular cross section.
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Fig. 10 Spanwise distribution of axial stress at corner of canti-
lever beam with tip load z = 1 and y = 1).

As an additional validation of the present theory, the canti-
lever beam (b = 4h) subject to a uniformly distributed load
analyzed by Bauchau' is considered. For this beam, tip de-
flection (Wrp/fL*) X 107° was 4.66 m. The corresponding val-
ues obtained by Bauchau'? are 4.604 and 4.677 m by the Ber-
noulli and St-Venant methods using four eigenwarping terms.
The tip—twist under distributed torque (Orp/mel?) X 107 for
this beam is 129.1 by the present method compared with 126.7
(Bernoulli) and 130.0 (St-Venant) methods obtained by Bau-
chau' using four eigenwarping terms. The correlation between
the two methods is good.

VIII. Comparison with Other Theories

The objective of a beam theory is to reduce a three-dimen-
sional problem to a one-dimensional problem by separating the
three-dimensional state of stress into section properties and
other quantities like deflections that depend upon the length-
wise coordinate. Various levels of approximations start with
the Euler—Bernoulli model with its well-known assumptions.
The next level of approximation is the Timoshenko model that
considers the influence of transverse shear deformations and
introduces a shear correction factor to account for the parabolic
variation of shear stress across the cross section. Higher-order
shear deformation theories consider the influence of additional
cross-sectional deformations (warpings). As shown in the ex-
amples considered in this article, these warpings can have a
significant effect on the deflections, frequencies, and stresses.
depending on the beam geometry and material characteristics.

For beams of general cross section, an important ingredient
is the choice of warping function. References 8—10 are rep-
resentative examples of the use of FEMs for the determination
of the warping functions. Bauchau'’ uses the concept of ei-
genwarpings.

The present theory differs from the earlier theories in two
respects:

1) The warping functions are derived from a consideration
of the equilibrium equations for an equivalent isotropic cross
section, and taking into account the variation of (4,,
ALJ/A,,) and A, along the contour. This enables the use of the
well-established warping functions of isotropic structures as
trial functions in the analysis.

2) The influence of A, is taken into account by the intro-
duction of the factors «, and «, and by minimizing the strain
energy density with respect to «, and «,. As was shown for
both thin-walled and solid cross-sectional beams, this brings
out the couplings, and for symmetric lay-ups, correctly ac-
counts for the reduction in bending stiffness. These improve
Rehfield’s theory and are responsible for the close agreement
between the present theory and Mansfield’s theory.

IX. Concluding Remarks
This article has attempted a simple framework for the the-
oretical analysis of thin-walled composite beams. By compar-
ison with experimental results for both static and vibration
responses, the importance of adequate modeling of the torsion-
related warping has been brought out. By optimizing the tor-
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sion- and shear-related warping so that their contribution to
the strain—energy is minimum, the effect of reduction in the
effective bending stiffness of symmetrically laminated con-
structions is derived. The results for both static and vibration
responses show that the Euler—Bernoulli model can give very
accurate results when the torsion-related warping is adequately
modeled.

For obtaining good correlations for stresses, it is necessary
to use the higher-order shear deformation theory. The present
higher-order theory has been validated against results from
other theoretical methods for both deflections and stresses. For
beams of rectangular cross section, a modified slenderness ra-
tio has been derived as a similarity parameter for comparing
the responses of different beams. For certain beams, it is pos-
sible for the shear-lag effects to persist over the entire length
of the beam.
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